Ultrasensitive Detection of Prostate Specific Antigen by an Unlabeled Fluorescence Aptasensor Based on the AIE Effect

J Fluoresc. 2024 May 16. doi: 10.1007/s10895-024-03739-0. Online ahead of print.

Abstract

The accurate and sensitive detection of prostate specific antigen (PSA) is vital for the early diagnosis and treatment of prostate cancer. To this end, an unlabeled fluorescent aptasensor was constructed by using a novel Compound B {1,1'-(1,4-phenylene) bis(3-ethyl-1H-imidazol-3-ium) iodide} with aggregation-induced emission (AIE) activity as a fluorescence signal and NH2-Fe3O4 particle as an adsorption platform. Compound B could combine with prostate specific antigen aptamers (PSA-Apt) to form a PSA-Apt/B complex, which further generated the AIE effect. Then, PSA was added to the PSA-Apt/B solution. PSA combined with PSA-Apt/B to form the PSA-Apt/B/PSA complex. Next, NH2-Fe3O4 magnetic particles were added to the solution. Given that PSA-Apt/B/PSA would no longer combine with NH2-Fe3O4 magnetic particles, the PSA-Apt/B/PSA complex remained in the supernate after magnet separation, and the supernate showed strong fluorescence (I). When no PSA was added to the PSA-Apt/B solution, PSA-Apt/B could combine with NH2-Fe3O4 magnetic particles and would be sucked into the bottom of the test tube by magnet, and the supernate would show weak fluorescence (I0). Result showed that the difference between the above-mentioned two fluorescence values (∆I = I - I0) had an excellent linear relationship with the PSA concentration within the concentration range of 0.01-10 ng/mL, and its limit of detection was 3 pg/mL (S/N = 3). In addition, the sensor has high accuracy and can be directly used to test PSA in actual serum samples.

Keywords: Aggregation-induced emission; Aptasensor; Fluorescence; NH2-Fe3O4; Prostate specific antigen.