Confined run-and-tumble particles with non-Markovian tumbling statistics

Phys Rev E. 2024 Apr;109(4-1):044121. doi: 10.1103/PhysRevE.109.044121.

Abstract

Confined active particles constitute simple, yet realistic, examples of systems that converge into a nonequilibrium steady state. We investigate a run-and-tumble particle in one spatial dimension, trapped by an external potential, with a given distribution g(t) of waiting times between tumbling events whose mean value is equal to τ. Unless g(t) is an exponential distribution (corresponding to a constant tumbling rate), the process is non-Markovian, which makes the analysis of the model particularly challenging. We use an analytical framework involving effective position-dependent tumbling rates to develop a numerical method that yields the full steady-state distribution (SSD) of the particle's position. The method is very efficient and requires modest computing resources, including in the large-deviation and/or small-τ regime, where the SSD can be related to the the large-deviation function, s(x), via the scaling relation P_{st}(x)∼e^{-s(x)/τ}.