Cobalt telluride regulated by nickel for efficient electrooxidation of 5-hydroxymethylfurfural

J Colloid Interface Sci. 2024 Sep 15:670:96-102. doi: 10.1016/j.jcis.2024.05.050. Epub 2024 May 11.

Abstract

Replacing the anodic oxygen evolution reaction (OER) in water splitting with 5-hydroxymethylfurfural oxidation reaction (HMFOR) can not only reduce the energy required for hydrogen production but also yield the valuable chemical 2,5-furandicarboxylic acid (FDCA). Co-based catalysts are known to be efficient for HMFOR, with high-valent Co being recognized as the main active component. However, efficiently promoting the oxidation of Co2+ to produce high-valent reactive species remains a challenge. In this study, Ni-doped CoTe (CoNiTe) nanorods were prepared as efficient catalysts for HMFOR, achieving a high HMFOR current density of 65.3 mA cm-2 at 1.50 V. Even after undergoing five successive electrolysis processes, the Faradaic efficiency (FE) remained at approximately 90.7 %, showing robust electrochemical durability. Mechanistic studies indicated that Ni doping changes the electronic configuration of Co, enhancing its charge transfer rate and facilitating the oxidation of Co2+ to high-valent CoO2 species. This work reveals the effect of Ni doping on the reconfiguration of the active phase during HMFOR.

Keywords: 5-Hydroxymethylfurfural; Electrooxidation; High-valent cobalt; Ni doping.