Differential mobilization of myeloma cells and normal hematopoietic stem cells in multiple myeloma after treatment with cyclophosphamide and granulocyte-macrophage colony-stimulating factor

Blood. 1996 Jan 15;87(2):805-11.

Abstract

Peripheral blood stem cells (PBSCs) mobilized with high-dose chemotherapy and hematopoietic growth factors are now widely used to support myeloablative therapy of multiple myeloma and effect complete remissions in up to 50% of patients with apparent extension of event-free and overall survival. Because tumor cells are present not only in bone marrow, but also in virtually all PBSC harvests, it is conceivable that autografted myeloma cells contribute to relapse after autotransplants. In this study, the kinetics of mobilization of normal hematopoietic stem cells were compared with those of myeloma cells present in PBSC harvests of 12 patients after high-dose cyclophosphamide and granulocyte-macrophage colony-stimulating factor administration. CD34+ and CD34+Lin-Thy+ stem cell contents were measured by multiparameter flow cytometry, and myeloma cells were quantitated by immunostaining for the relevant Ig light chain and by a quantitative polymerase chain reaction for the myeloma-specific CDRIII sequence. Results indicated marked heterogeneity in the percentages of mobilized stem cells among different patients (0.1% to 22.2% for CD34+ cells and 0.1% to 7.5% for CD34+Lin-Thy+ cells, respectively). The highest proportions of hematopoietic progenitor cells were observed early during apheresis, with 9 of 12 patients mobilizing adequate amounts of CD34+ cells for 2 autotransplants (> 4 x 10(6)/kg) within the first 2 days, whereas peak levels (percent and absolute numbers) of myeloma cells were present on days 5 and 6 (0.5% to 22.0%). During the last days of collection, mobilized tumor cells exhibited more frequently high labeling index values (1% to 10%; median, 4.4%) and an immature phenotype (CD19+). The differential mobilization observed between normal hematopoietic stem cells and myeloma cells can be exploited to reduce tumor cell contamination in PBSC harvests.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biomarkers
  • Biomarkers, Tumor
  • Blood Component Removal
  • Bone Marrow / drug effects*
  • Bone Marrow / pathology
  • CD4 Antigens / analysis
  • Cell Lineage
  • Cyclophosphamide / pharmacology*
  • Drug Synergism
  • Granulocyte-Macrophage Colony-Stimulating Factor / pharmacology*
  • Hematopoietic Stem Cell Transplantation / methods*
  • Hematopoietic Stem Cells / drug effects*
  • Humans
  • Multiple Myeloma / blood*
  • Multiple Myeloma / pathology
  • Multiple Myeloma / therapy
  • Neoplasm, Residual
  • Neoplastic Stem Cells / drug effects*
  • Polymerase Chain Reaction
  • Thy-1 Antigens / analysis

Substances

  • Biomarkers
  • Biomarkers, Tumor
  • CD4 Antigens
  • Thy-1 Antigens
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • Cyclophosphamide