The mechanism of inactivation of human placental S-adenosylhomocysteine hydrolase by (E)-4',5'-didehydro-5'-methoxyadenosine and adenosine 5'-carboxaldehyde oxime

Arch Biochem Biophys. 1997 Jul 1;343(1):109-17. doi: 10.1006/abbi.1997.0159.

Abstract

The mechanisms by which (E)-4',5'-didehydro-5'-methoxyadenosine (DMOA) and adenosine 5'-carboxaldehyde oxime (ACAO) inactivate S-adenosylhomocysteine (AdoHcy) hydrolase were elucidated in this study. Their inhibitory activities toward AdoHcy hydrolase were found to be time- and concentration-dependent, and DMOA and ACAO had K(i) and k2 values of 3.0 microM and 0.10 min(-1) and 0.67 microM and 0.16 min(-1), respectively. The inactivation of AdoHcy hydrolase by DMOA (and ACAO) occurs concomitantly with the reduction of the enzyme-bound NAD+ to NADH. The rates of enzyme inactivation correspond to the rates of NADH formation. Incubation of both DMOA and ACAO with the NAD+ form of AdoHcy hydrolase resulted in formation of 3'-ketoadenosine (3'-keto-Ado) 5'-carboxaldehyde and its 4'-epimer. Incubation of DMOA and ACAO with the apo form of the enzyme afforded adenosine (Ado) 5'-carboxaldehyde and its 4'-epimer. These results show that DMOA and ACAO are "proinhibitors" of the enzyme. They are first converted to the inhibitors (Ado 5'-carboxaldehyde and its 4'-epimer) in the active site of the enzyme; these inhibitors then inactivate the enzyme by a type I mechanism. The results from this study demonstrated that this is a common mechanism by which 4',5'-didehydroadenosine analogs, serving as substrates of both the 5'-hydrolytic activity and the 3'-oxidative activity of the enzyme, inactivate AdoHcy hydrolase. The results also provide further evidence supporting the hypothesis that AdoHcy hydrolase possesses a 5'-hydrolytic activity independent of the 3'-oxidation activity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine / analogs & derivatives*
  • Adenosine / pharmacology
  • Adenosylhomocysteinase
  • Catalysis
  • Chromatography, High Pressure Liquid
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Hydrolases / antagonists & inhibitors*
  • Hydrolases / metabolism
  • NAD / chemistry
  • Oxidation-Reduction

Substances

  • 4',5'-didehydro-5'-methoxyadenosine
  • Enzyme Inhibitors
  • adenosine 5'-carboxaldehyde oxime
  • NAD
  • Hydrolases
  • Adenosylhomocysteinase
  • Adenosine