Effect of body composition at selection on reproductive development in large white gilts

J Anim Sci. 1997 Jul;75(7):1764-72. doi: 10.2527/1997.7571764x.

Abstract

Fifty-four Large White gilts were used to determine the effect of body composition at selection (145 d of age) on the onset of puberty and subsequent reproductive development until 202 d of age. Gilts were assigned to one of three groups based on their backfat depth at selection: 10 to 12 mm (L), 13 to 15 mm (M), and 16 to 18 mm (F). All of the F gilts, 92% of the M gilts, and 67% of the L gilts reached puberty by slaughter at 202 d of age. Data from a subgroup (first 67% to reach puberty in each group; L = Lp, M = Mp, and F = Fp) was also used. The M (Mp) and F (Fp) gilts reached puberty at 172 d (166 d) and 170 d (166 d) of age, respectively, but the L (Lp) gilts at 184.5 d were 12 d (18 d) older than M (P < .05), Mp (P < .001), and F (P < .01), Fp (P < .001) gilts. The Lp (97.68 kg) and Mp (98.33 kg) gilts were lighter (P < .01) than Fp (108.72 kg) gilts at puberty. There were no differences (P < .05) among the L, M, and F gilts in terms of backfat depth or weight at puberty. The L (Lp) gilts had a mean of 1.16 (1.75) estrous cycles, which was lower (P < .01) than for M (Mp) and (P < .01) F (Fp) gilts, with 1.96 (2.29) and 2.25 (2.33) cycles, respectively. L (Lp) gilts had fewer (P < .05) follicles, 13.14 (12.63), than either M (Mp), 19.08 (18.71), or F (Fp), 18.25 (17.42) gilts. The number of corpora lutea was not influenced (P > .05) by grouping at selection, but Fp gilts had fewer (P < .05) corpora lutea than Mp or Fp gilts. Live weight at slaughter was not influenced (P > .10) by grouping at selection or subgrouping at puberty. The L gilts with a mean of 18.05 mm of backfat at slaughter were leaner (P < .05) than the F (21.66 mm) but not (P > .10) the M gilts (19.41 mm). Subgrouping had no effect. Fat deposition and protein deposition were higher (P < .05) in those animals that attained puberty. We conclude that the rate of fat and protein deposition seems to be one of the determinants of puberty attainment.

MeSH terms

  • Aging / physiology
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Body Composition / genetics
  • Body Composition / physiology*
  • Body Weight / physiology
  • Corpus Luteum / physiology
  • Estrus / physiology
  • Female
  • Ovarian Follicle / physiology
  • Reproduction / physiology*
  • Selection, Genetic*
  • Sexual Maturation / physiology
  • Swine / genetics*
  • Swine / physiology*
  • Weight Gain / physiology