Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals

Circulation. 1998 Jun 2;97(21):2175-82. doi: 10.1161/01.cir.97.21.2175.

Abstract

Background: Ischemia with or without reperfusion induces the release of diverse products from monocytes, including cytokines such as interleukin-1 (IL-1). To determine whether these phenomena modulate fibrinolysis and potentially exacerbate impairment of the macrocirculation, microcirculation, or both, we characterized the effects of IL-1 on the expression of fibrinolytic system and matrix proteins in rat cardiac microvascular endothelial cells (CMECs).

Methods and results: Confluent CMECs were exposed to IL-1 in serum-free medium for 24 hours, and cell-conditioned medium was assayed for plasminogen activator inhibitor type 1 (PAI-1), the primary physiological inhibitor of plasminogen activators, and for type 1 collagen with Western blotting. IL-1 (2 ng/mL) specifically increased the accumulation of PAI-1 (4.4 +/- 0.6-fold; mean +/- SD; n = 9) without affecting tissue plasminogen activator (t-PA) or urokinase plasminogen activator (u-PA) levels, which remained unchanged. IL-1 increased the accumulation of collagen in conditioned media by 3.5 +/- 0.7-fold (n = 6). Conversely, the accumulation of both PAI-1 and collagen induced by IL-1 was inhibited with an IL-1 receptor antagonist (200 ng/mL; n = 6) and with cycloheximide (10 micrograms/mL; n = 6), implying that protein synthesis was a requirement for the effect. To determine whether the IL-1 effect was mediated by induction of oxygen-centered free radical production, known to be induced by IL-1, we exposed the cells to the hydroxyl radical scavenger tetramethylthiourea (10 mmol/L) and observed abolition of the IL-1-induced increase in the expression of PAI-1 and collagen (n = 6). Conversely, superoxides (generated with 10 mU/mL xanthine oxidase plus 0.6 mmol/L hypoxanthine, and 100 mumol/L hydrogen peroxide) induced the accumulation of PAI-1 and collagen (n = 6). IL-1 (1 microgram/kg body wt) and lipopolysaccharide (50 micrograms/kg body wt) administered in vivo increased PAI-1 protein in rat hearts as detected with Western blotting and PAI-1 immunostaining of rat heart microvessels, indicating the effects delineated in vitro were paralleled by effects in vivo.

Conclusions: These results indicate that IL-1-induced oxygen-centered free radicals stimulate elaboration of PAI-1 and collagen by CMECs. Accordingly, microvascularly mediated inhibition of fibrinolysis may predispose to the persistence of microvascular thrombi, thereby contributing to impaired microcirculatory function, the no-reflow phenomenon, and cardiac dysfunction after ischemia and reperfusion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Collagen / biosynthesis*
  • Coronary Vessels / drug effects*
  • Coronary Vessels / metabolism
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Free Radicals
  • Interleukin 1 Receptor Antagonist Protein
  • Interleukin-1 / pharmacology*
  • Lipopolysaccharides / pharmacology
  • Mice
  • Plasminogen Activator Inhibitor 1 / biosynthesis*
  • Rabbits
  • Rats
  • Reactive Oxygen Species / metabolism*
  • Sialoglycoproteins / pharmacology

Substances

  • Free Radicals
  • Il1rn protein, mouse
  • Interleukin 1 Receptor Antagonist Protein
  • Interleukin-1
  • Lipopolysaccharides
  • Plasminogen Activator Inhibitor 1
  • Reactive Oxygen Species
  • Sialoglycoproteins
  • Collagen