o8G Site-Specifically Modified tRF-1-AspGTC: A Novel Therapeutic Target and Biomarker for Pulmonary Hypertension

Circ Res. 2024 May 15. doi: 10.1161/CIRCRESAHA.124.324421. Online ahead of print.

Abstract

Rationale: Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated.

Objective: We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling.

Methods and results: Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine-modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. This modification occurs at the fifth 8-oxoguanine (5o8G) tRF in the seed region of the tRNA-derived fragments. Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A and CASP3 and inhibited their expression. Ultimately, BMPR2 (bone morphogenetic protein receptor 2)-reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH.

Conclusions: Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.

Keywords: blood pressure; cell proliferation; hypertension; reactive oxygen species; vascular remodeling.