Electrowriting patterns and electric field harness directional cell migration for skin wound healing

Mater Today Bio. 2024 May 6:26:101083. doi: 10.1016/j.mtbio.2024.101083. eCollection 2024 Jun.

Abstract

Directional cell migration is a crucial step in wound healing, influenced by electrical and topographic stimulations. However, the underlying mechanism and the combined effects of these two factors on cell migration remain unclear. This study explores cell migration under various combinations of guided straight line (SL) spacing, conductivity, and the relative direction of electric field (EF) and SL. Electrowriting is employed to fabricate conductive (multiwalled carbon nanotube/polycaprolactone (PCL)) and nonconductive (PCL) SL, with narrow (50 μm) and wide (400 μm) spacing that controls the topographic stimulation strength. Results show that various combinations of electrical and topographic stimulation yield significantly distinct effects on cell migration direction and speed; cells migrate fastest with the most directivity in the case of conductive, narrow-spacing SL parallel to EF. A physical model based on intercellular interactions is developed to capture the underlying mechanism of cell migration under SL and EF stimulations, in agreement with experimental observations. In vivo skin wound healing assay further confirmed that the combination of EF (1 V cm-1) and parallelly aligned conductive fibers accelerated the wound healing process. This study presents a promising approach to direct cell migration and enhance wound healing by optimizing synergistic electrical and topographic stimulations.

Keywords: Cell migration; Electrical stimulation; Solution electrowriting; Topographic cues; Wound healing.