Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions

Am J Physiol. 1999 Aug;277(2):C330-42. doi: 10.1152/ajpcell.1999.277.2.C330.

Abstract

The regulation of transendothelial fluid flow by glucocorticoids was studied in vitro with use of human endothelial cells cultured from Schlemm's canal (SCE) and the trabecular meshwork (TM) in conjunction with computer-linked flowmeters. After 2-7 wk of 500 nM dexamethasone (Dex) treatment, the following physiological, morphometric, and biochemical alterations were observed: a 3- to 5-fold increase in fluid flow resistance, a 2-fold increase in the representation of tight junctions, a 10- to 30-fold reduction in the mean area occupied by interendothelial "gaps" or preferential flow channels, and a 3- to 5-fold increase in the expression of the junction-associated protein ZO-1. The more resistive SCE cells expressed two isoforms of ZO-1; TM cells expressed only one. To investigate the role of ZO-1 in the aforementioned Dex effects, its expression was inhibited using antisense phosphorothioate oligonucleotides, and the response was compared with that observed with the use of sense and nonsense phosphorothioate oligonucleotides. Inhibition of ZO-1 expression abolished the Dex-induced increase in resistance and the accompanying alterations in cell junctions and gaps. These results support the hypothesis that intercellular junctions are necessary for the development and maintenance of transendothelial flow resistance in cultured SCE and TM cells and are likely involved in the mechanism of increased resistance associated with glucocorticoid exposure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Body Fluids / physiology*
  • Cell Line
  • Dexamethasone / pharmacology*
  • Endothelium / cytology
  • Endothelium / metabolism
  • Glucocorticoids / pharmacology*
  • Humans
  • Intercellular Junctions / drug effects*
  • Intercellular Junctions / physiology
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Oligonucleotides, Antisense / pharmacology
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism
  • RNA, Messenger / metabolism
  • Sclera / cytology
  • Sclera / metabolism*
  • Tight Junctions / physiology
  • Trabecular Meshwork / cytology
  • Trabecular Meshwork / metabolism*
  • Zonula Occludens-1 Protein

Substances

  • Glucocorticoids
  • Membrane Proteins
  • Oligonucleotides, Antisense
  • Phosphoproteins
  • RNA, Messenger
  • TJP1 protein, human
  • Zonula Occludens-1 Protein
  • Dexamethasone