Generation of ferric iron links oxidative stress to α-synuclein oligomer formation

J Parkinsons Dis. 2011;1(2):205-16. doi: 10.3233/JPD-2011-11040.

Abstract

Background: Synucleinopathies such as Parkinson's disease are characterized by the deposition of aggregated α-synuclein in affected brain areas. As genes involved in mitochondrial function, mitochondrial toxins, and age-related mitochondrial impairment have been implicated in Parkinson's disease pathogenesis, an increase in reactive oxygen species resulting from mitochondrial dysfunction has been speculated to induce α-synuclein aggregation. In vitro, pore-forming, SDS-resistant α-synuclein oligomers are formed in presence of ferric iron and may represent an important toxic particle species.

Methodology/principal findings: We investigated the interplay of reactive oxygen species, antioxidants and iron oxidation state in regard to α-synuclein aggregation using confocal single particle fluorescence spectroscopy, Phenanthroline spectrometry and thiobarbituric acid reactive substances assay. We found that the formation of α-synuclein oligomers in presence of Fe³⁺ is due to a direct interaction. In contrast, oxidizing agents and hydroxyl radicals generated in the Fenton reaction did not directly affect α-synuclein oligomerization. However, reactive oxygen species could enhance aggregation via oxidation of ferrous to ferric iron when iron ions were present.

Conclusions/significance: Our data thus indicate that oxidative stress affects α-synuclein aggregation via oxidation of iron to the ferric state. This provides a new perspective on the role of mitochondrial toxins and mitochondrial dysfunction in the pathogenesis of Parkinson's disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascorbic Acid / pharmacology
  • Deferoxamine / pharmacology
  • Dose-Response Relationship, Drug
  • Ferric Compounds / metabolism*
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Microscopy, Confocal
  • Models, Biological
  • Oxidation-Reduction / drug effects*
  • Siderophores / pharmacology
  • alpha-Synuclein / chemistry*
  • alpha-Synuclein / drug effects
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*

Substances

  • Ferric Compounds
  • Siderophores
  • alpha-Synuclein
  • Hydrogen Peroxide
  • Deferoxamine
  • Ascorbic Acid