Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation

Br J Ophthalmol. 2016 Oct;100(10):1372-6. doi: 10.1136/bjophthalmol-2015-307985. Epub 2016 Jan 14.

Abstract

Background/aims: The purpose of the study was to create a standardised protocol for choroidal thickness measurements and to determine whether choroidal thickness measurements made on images obtained by spectral domain optical coherence tomography (SD-OCT) and swept source (SS-) OCT from patients with healthy retina are interchangeable when performed manually or with an automatic algorithm.

Methods: 36 grid cell measurements for choroidal thickness for each volumetric scan were obtained, which were measured for SD-OCT and SS-OCT with two methods on 18 eyes of healthy volunteers. Manual segmentation by experienced retinal graders from the Vienna Reading Center and automated segmentation on >6300 images of the choroid from both devices were statistically compared.

Results: Model-based comparison between SD-OCT/SS-OCT showed a systematic difference in choroidal thickness of 16.26±0.725 μm (p<0.001) for manual segmentation and 21.55±0.725 μm (p<0.001) for automated segmentation. Comparison of automated with manual segmentations revealed small differences in thickness of -0.68±0.513 μm (p=0.1833). The correlation coefficients for SD-OCT and SS-OCT measures within eyes were 0.975 for manual segmentation and 0.955 for automatic segmentation.

Conclusion: Choroidal thickness measurements of SD-OCT and SS-OCT indicate that these two devices are interchangeable with a trend of choroidal thickness measurements being slightly thicker on SD-OCT with limited clinical relevance. Use of an automated algorithm to segment choroidal thickness was validated in healthy volunteers.

Keywords: Choroid; Imaging.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Algorithms*
  • Choroid / diagnostic imaging*
  • Cross-Sectional Studies
  • Female
  • Healthy Volunteers
  • Humans
  • Male
  • Reproducibility of Results
  • Tomography, Optical Coherence / methods*
  • Young Adult