Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms

J Microbiol Methods. 2021 Nov:190:106328. doi: 10.1016/j.mimet.2021.106328. Epub 2021 Sep 16.

Abstract

Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.

Keywords: Biofilms; Hyperthermia; Photothermal nanoparticles; S. aureus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects*
  • Clindamycin / pharmacology*
  • Elastic Modulus / drug effects
  • Humans
  • Hyperthermia
  • Microbial Sensitivity Tests
  • Microbial Viability
  • Nanoparticles / chemistry
  • Nanoparticles / therapeutic use*
  • Polymers / chemistry
  • Polymers / pharmacology*
  • Staphylococcal Infections / drug therapy
  • Staphylococcal Infections / microbiology
  • Staphylococcus aureus / drug effects*
  • Streptococcal Infections / drug therapy
  • Streptococcal Infections / microbiology
  • Streptococcus pyogenes / drug effects*

Substances

  • Anti-Bacterial Agents
  • Polymers
  • Clindamycin