Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation

Blood Adv. 2023 Jun 27;7(12):2888-2896. doi: 10.1182/bloodadvances.2022008922.

Abstract

The recurrence of malignancy after hematopoietic cell transplantation (HCT) is the primary cause of transplantation failure. The NKG2D axis is a powerful pathway for antitumor responses, but its role in the control of malignancy after HCT is not well-defined. We tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Donors were additionally defined for the presence of NKG2D residue 72. Mortality was higher in patients with MICB-52Asn relative to those with 52Asp (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.24-2.71; P = .002) and lower in those with MICA-STR mismatch than in those with STR match (HR, 0.66; 95% CI, 0.54-0.79; P = .00002). Relapse was lower with NKG2D-72Thr donors than with 72Ala donors (relapse HR, 0.57; 95% CI, 0.35-0.91; P = .02). The protective effects of patient MICB-52Asp with donor MICA-STR mismatch and NKG2D-72Thr were enhanced when all 3 features were present. The NKG2D ligand/receptor pathway is a transplantation determinant. The immunobiology of relapse is defined by the concerted effects of MICA, MICB, and NKG2D germ line variation. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Hematopoietic Stem Cell Transplantation* / adverse effects
  • Histocompatibility Antigens Class I / genetics
  • Histocompatibility Antigens Class I / metabolism
  • Humans
  • Ligands
  • NK Cell Lectin-Like Receptor Subfamily K* / genetics
  • NK Cell Lectin-Like Receptor Subfamily K* / metabolism

Substances

  • Ligands
  • NK Cell Lectin-Like Receptor Subfamily K
  • Histocompatibility Antigens Class I