Phaeohyphomycosis caused by Corynespora cassiicola, a plant pathogen worldwide

Mycology. 2023 Aug 21;15(1):91-100. doi: 10.1080/21501203.2023.2247433. eCollection 2024.

Abstract

Although rare, trans-kingdom infection features an interesting infection biology concept, in which highly versatile pathogenic attributes allow successful infections in evolutionarily highly divergent species. Corynespora cassiicola is a phytopathogenic fungus and occasionally causes human infections. Herein, we report a phaeohyphomycosis case caused by C. cassiicola. Given that sporadic reports may contribute to a lack of awareness of the transmission route, clinical manifestations, and diagnostic and clinical management, we systematically reviewed the cases reported thus far. Nine patients were identified and included in the pooled analysis, 88.9% (8/9) of whom were reported after 2010. All patients were from Asian, African, and Latin American countries, among whom 77.8% (7/9) were farmers or lived in areas with active agriculture. Exposed body parts were the major affected infection area, and clinical manifestations were mainly non-specific inflammatory reactions. Although biochemical and morphological examinations confirmed the presence of fungal infection, molecular analysis was used for the final diagnosis, with 77.8% (7/9) being identified by internal transcribed spacer sequencing. Whereas voriconazole, terbinafine, and AmB, either alone or in combination, resulted in successful infection resolution in most cases (5/9; 55.5%), those suffering from invasive facial infections and CARD9 deficiency showed poor outcomes. Our patient is the third case of invasive facial infection caused by C. cassiicola and was successfully treated with intravenous LAmB followed by oral voriconazole combined with topical antifungal irrigation. Molecular identification of fungus and prompt antifungal treatment is pivotal in the clinical success of patients suspected to have phaeohyphomycosis. Moreover, as evidenced by our data, itraconazole treatment is not recommended.

Keywords: Corynespora cassiicola; amphotericin B; phaeohyphomycosis; terbinafine; voriconazole.

Grants and funding

This work was supported by the National Natural Science Foundation of China (82202543, 82072257, 82102416), Ministry of Science and Technology of China (2022YFC2504800), Science and Technology Commission of Shanghai Municipality (20DZ2272000 and 21410750500), Shanghai Municipal Health Commission (shslczdzk01001), and Chinese Academy of Engineering (2022-HZ-10-3).