Morphology Observation of Two-Dimensional Monolayers of Model Proteins on Water Surface as Revealed by Dropping Method

Bioengineering (Basel). 2024 Apr 11;11(4):366. doi: 10.3390/bioengineering11040366.

Abstract

We have investigated the morphology of two-dimensional monolayers of gramicidin-D (GD) and alamethicin (Al) formed on the water surface by the dropping method (DM) using surface tension measurement (STm), Brewster angle microscopy (BAM), and atomic force microscopy (AFM). Dynamic light scattering (DLS) revealed that GD in alcoholic solutions formed a dimeric helical structure. According to the CD and NMR spectroscopies, GD molecules existed in dimer form in methanol and lipid membrane environments. The STm results and BAM images revealed that the GD dimer monolayer was in a liquid expanded (LE) state, whereas the Al monolayer was in a liquid condensed (LC) state. The limiting molecular area (A0) was 6.2 ± 0.5 nm2 for the GD-dimer and 3.6 ± 0.5 nm2 for the Al molecule. The AFM images also showed that the molecular long axes of both the GD-dimer and Al were horizontal to the water surface. The stability of each monolayer was confirmed by the time dependence of the surface pressure (π) observed using the STm method. The DM monolayer preparation method for GD-dimer and Al peptide molecules is a useful technique for revealing how the model biological membrane's components assemble in two dimensions on the water surface.

Keywords: Brewster angle microscopy (BAM); alamethicin (Al); atomic force microscopy (AFM); dropping method (DM); gramicidin-D (GD); monolayer; surface tension measurement (STm).

Grants and funding

This research received no external funding.