Intratumor transforming growth factor-β signaling with extracellular matrix-related gene regulation marks chemotherapy-resistant gastric cancer

Biochem Biophys Res Commun. 2024 May 13:721:150108. doi: 10.1016/j.bbrc.2024.150108. Online ahead of print.

Abstract

Drug-tolerant persister (DTP) cells remain following chemotherapy and can cause cancer relapse. However, it is unclear when acquired resistance to chemotherapy emerges. Here, we compared the gene expression profiles of gastric cancer patient-derived cells (GC PDCs) and their respective xenograft tumors with different sensitivities to 5-fluorouracil (5-FU) by using immunodeficient female BALB/c-nu mice. RNA sequencing analysis of 5-FU-treated PDCs demonstrated that DNA replication/cell cycle-related genes were transiently induced in the earlier phase of DTP cell emergence, while extracellular matrix (ECM)-related genes were sustainably upregulated during long-term cell survival in 5-FU-resistant residual tumors. NicheNet analysis, which uncovers cell-cell signal interactions, indicated the transforming growth factor-β (TGF-β) pathway as the upstream regulator in response to 5-FU treatment. This induced ECM-related gene expression in the 5-FU-resistant tumor model. In the 5-FU-resistant residual tumors, there was a marked upregulation of cancer cell-derived TGF-β1 expression and increased phosphorylation of SMAD3, a downstream regulator of the TGF-β receptor. By contrast, these responses were not observed in a 5-FU-sensitive tumor model. We further found that TGF-β-related upregulation of ECM genes was preferentially observed in non-responders to chemotherapy with 5-FU and/or oxaliplatin among 22 patient-derived xenograft tumors. These observations suggest that chemotherapy-induced activation of the TGF-β1/SMAD3/ECM-related gene axis is a potential biomarker for the emergence of drug resistance in GCs.

Keywords: Cell-cell interaction; Chemotherapy; Drug resistance; Gastric cancer; TGF-β/SMAD signaling.