Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro

Circulation. 1999 Sep 7;100(10):1116-24. doi: 10.1161/01.cir.100.10.1116.

Abstract

Background: The mechanism responsible for cardiac hypertrophy is currently conceptualized as having 2 components, mediated by cardiac myocytes and nonmyocytes, respectively. The interaction between myocytes and nonmyocytes via growth factors and/or cytokines plays an important role in the development of cardiac hypertrophy. We found that cardiac myocytes showed hypertrophic changes when cocultured with cardiac nonmyocytes. Cardiotrophin-1 (CT-1), a new member of the interleukin-6 family of cytokines, was identified by its ability to induce hypertrophic response in cardiac myocytes. In this study, we used the in vitro coculture system to examine how CT-1 is involved in the interaction between cardiac myocytes and nonmyocytes during the hypertrophy process.

Methods and results: RNase protection assay revealed that CT-1 mRNA levels were 3. 5 times higher in cultured cardiac nonmyocytes than in cultured cardiac myocytes. We developed anti-CT-1 antibodies and found that they significantly inhibited the increased atrial and brain natriuretic peptide secretion and protein synthesis characteristic of hypertrophic changes of myocytes in the coculture. In addition, non-myocyte-conditioned medium rapidly elicited tyrosine phosphorylation of STAT3 and induced an increase in natriuretic peptide secretion and protein synthesis in cultured cardiac myocytes; these effects were partially suppressed by anti-CT-1 antibodies. Finally, the hypertrophic effects of CT-1 and endothelin-1, which we had previously implicated in the hypertrophic activity in the coculture, were additive in cardiac myocytes.

Conclusions: These results show that CT-1 secreted from cardiac nonmyocytes is significantly involved in the hypertrophic changes of cardiac myocytes in the coculture and suggest that CT-1 is an important local regulator in the process of cardiac hypertrophy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies / pharmacology
  • Cardiomegaly / pathology*
  • Cardiomegaly / physiopathology*
  • Cell Communication / drug effects
  • Cell Communication / physiology*
  • Cells, Cultured
  • Cytokines / genetics
  • Cytokines / immunology
  • Cytokines / physiology*
  • Drug Synergism
  • Endothelin-1 / pharmacology
  • Humans
  • Myocardium / metabolism
  • Myocardium / pathology*
  • RNA, Messenger / metabolism
  • Rats

Substances

  • Antibodies
  • Cytokines
  • Endothelin-1
  • RNA, Messenger
  • cardiotrophin 1