Role of ERK MAP kinases in responses of cultured human airway smooth muscle cells to IL-1beta

Am J Physiol. 1999 Nov;277(5):L943-51. doi: 10.1152/ajplung.1999.277.5.L943.

Abstract

We have previously reported that interleukin (IL)-1beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle cells by increasing cyclooxygenase-2 (COX-2) expression and prostanoid formation. The purpose of this study was to determine whether extracellular signal-regulated kinases (ERKs) are involved in these events. Levels of phosphorylated ERK (p42 and p44) increased 8.3- and 13-fold, respectively, 15 min after treatment with IL-1beta (20 ng/ml) alone. Pretreating cells with the mitogen-activated protein kinase kinase inhibitor PD-98059 or U-126 (2 h before IL-1beta treatment) decreased ERK phosphorylation. IL-1beta (20 ng/ml for 22 h) alone caused a marked induction of COX-2 and increased basal PGE(2) release 28-fold (P < 0.001). PD-98059 (100 microM) and U-126 (10 microM) each decreased COX-2 expression when administered before IL-1beta treatment. In control cells, PD-98059 and U-126 had no effect on basal or arachidonic acid (AA; 10 microM)-stimulated PGE(2) release, but both inhibitors caused a significant decrease in bradykinin (BK; 1 microM)-stimulated PGE(2) release, consistent with a role for ERK in the activation of phospholipase A(2) by BK. In IL-1beta-treated cells, prior administration of PD-98059 caused 81, 92 and 40% decreases in basal and BK- and AA-stimulated PGE(2) release, respectively (P < 0.01), whereas administration of PD-98059 20 h after IL-1beta resulted in only 38 and 43% decreases in basal and BK-stimulated PGE(2) release, respectively (P < 0.02) and had no effect on AA-stimulated PGE(2) release. IL-1beta attenuated isoproterenol-induced decreases in human airway smooth muscle stiffness as measured by magnetic twisting cytometry, and PD-98059 or U-126 abolished this effect in a concentration-dependent manner. These results are consistent with the hypothesis that ERKs are involved early in the signal transduction pathway through which IL-1beta induces PGE(2) synthesis and beta-adrenergic hyporesponsiveness and that ERKs act by inducing COX-2 and activating phospholipase A(2).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Western
  • Bronchodilator Agents / pharmacology
  • Bucladesine / pharmacology
  • Cells, Cultured
  • Cyclooxygenase 2
  • Dinoprostone / metabolism
  • Enzyme Inhibitors / pharmacology
  • Flavonoids / pharmacology
  • Humans
  • Interleukin-1 / pharmacology*
  • Isoenzymes / metabolism
  • Isoproterenol / pharmacology
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • Magnetics
  • Membrane Proteins
  • Microspheres
  • Mitogen-Activated Protein Kinase 1 / immunology
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases / metabolism
  • Mitogen-Activated Protein Kinases / immunology
  • Mitogen-Activated Protein Kinases / metabolism*
  • Muscle, Smooth / chemistry
  • Muscle, Smooth / drug effects
  • Muscle, Smooth / enzymology*
  • Phosphorylation
  • Prostaglandin-Endoperoxide Synthases / metabolism
  • Protein Serine-Threonine Kinases*
  • Protein-Tyrosine Kinases / metabolism
  • Receptors, Adrenergic, beta / physiology
  • Trachea / cytology
  • Trachea / drug effects
  • Trachea / enzymology*

Substances

  • Bronchodilator Agents
  • Enzyme Inhibitors
  • Flavonoids
  • Interleukin-1
  • Isoenzymes
  • Membrane Proteins
  • Receptors, Adrenergic, beta
  • Bucladesine
  • Cyclooxygenase 2
  • PTGS2 protein, human
  • Prostaglandin-Endoperoxide Synthases
  • MAP2K2 protein, human
  • Protein-Tyrosine Kinases
  • Protein Serine-Threonine Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • MAP2K1 protein, human
  • Mitogen-Activated Protein Kinase Kinases
  • Dinoprostone
  • Isoproterenol
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one