Comparison of NAD 6000 and servo 900C ventilators in an infant lung model

Anesth Analg. 2000 Feb;90(2):315-21. doi: 10.1097/00000539-200002000-00014.

Abstract

We compared the ability of the NAD 6000 (North American Dräger, Telford, PA) and the Servo 900C (Siemens-Elema AB, Solna, Sweden) anesthesia ventilators to maintain precise delivery of small tidal volumes (V(t)) and positive end-expiratory pressure using an infant test lung model. A variety of ventilator and lung model settings were selected to test clinical conditions simulating normal and extremely compromised lung function. Differences in ventilator output were analyzed by using an independent t-test with P <0.05 considered significant. With the ventilators set to deliver a V(t) of 30 mL, the actual delivered V(t) was significantly better for the NAD 6000 (25 +/- 2 mL) compared with the Servo 900C (18 +/- 3 mL), P <0.001. When the ventilators were set to deliver 100 mL V(t), their delivered V(t) were not significantly different, NAD 6000 (66 +/- 19 mL) and Servo 900C (60 +/- 12 mL), P = 0.09. The exhaled V(t) read by the anesthesia machines was significantly closer to the delivered V(t) for the NAD 6000 (11 +/- 9 mL) compared with the Servo 900C (37 +/- 11 mL), P < 0.001. Both ventilators maintained the end expiratory pressure delivered to the test lung within 2 cm H(2)O of the set positive end-expiratory pressure on average. As the conditions changed requiring the ventilator to develop a higher peak inflating pressure, both ventilators showed a decrease in V(t) delivered, which was proportionate to the tubing compression volume loss.

Implications: The NAD 6000 (North American Dräger, Telford, PA) and Servo 900C (Siemens-Elema AB, Solna, Sweden) are able to precisely deliver small Tidal Volumes. They both decreased in performance when tested under extreme conditions. Earlier studies of traditional anesthesia ventilators suggest that the NAD 6000 and Servo 900C are superior pediatric ventilators.

Publication types

  • Comparative Study

MeSH terms

  • Air Pressure
  • Calibration
  • Evaluation Studies as Topic
  • Humans
  • Infant
  • Lung / physiology*
  • Models, Anatomic
  • Positive-Pressure Respiration
  • Tidal Volume
  • Ventilators, Mechanical*