Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity

Carcinogenesis. 2001 Jun;22(6):917-22. doi: 10.1093/carcin/22.6.917.

Abstract

Although several variants of DNA repair genes have been identified, their functional significance has not been determined. Using samples collected from 135 cancer-free women, this study evaluated whether amino acid substitution variants of DNA repair genes contribute to ionizing radiation (IR) susceptibility as measured by prolonged cell cycle G2 delay. PCR-restriction fragment length polymorphism (RFLP) assays were used to determine four genotypes: X-ray repair cross complementing group 1 (XRCC1, exon 6, C/T, 194 Arg/Trp and exon 10, G/A, 399 Arg/Gln), XRCC group 3 (XRCC3, exon 7, C/T, 241 Thr/Met) and apurinic/apyrimidinic endonuclease 1 (APE1, exon 5, T/G, 148 Asp/Glu). Fluorescence-activated cell sorter (FACS) analysis was used to measure cell cycle delay. APE1 (exon 5) genotype was significantly associated with mitotic delay (P = 0.01), with the Glu/Glu genotype having prolonged delay compared with the other two genotypes. The mitotic delay index (mean +/- SD) in women with the APE1 codon 148 Asp/Asp, Asp/Glu and Glu/Glu genotypes was 30.95 +/- 10.15 (n = 49), 30.65 +/- 10.4 (n = 60) and 39.56 +/- 13.12 (n = 21), respectively. There was a significant interaction between family history (FH) and APE1 (exon 5) genotype (P = 0.007) as well as FH and XRCC1 (exon 10) genotype (P = 0.005) in mitotic delay. Lastly, prolonged cell cycle delay was significantly associated with number of variant alleles when APE1 Asp148Glu and XRCC1 Arg399Gln genotypes were evaluated in a four-level model (chi(2) for linear trend = 10.9; P = 0.001). These results suggest that amino acid substitution variants of XRCC1 and APE1 may contribute to IR hypersensitivity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Amino Acid Substitution
  • Carbon-Oxygen Lyases / genetics*
  • DNA Repair / genetics
  • DNA-(Apurinic or Apyrimidinic Site) Lyase
  • DNA-Binding Proteins / genetics*
  • Deoxyribonuclease IV (Phage T4-Induced)
  • Female
  • G2 Phase / genetics
  • G2 Phase / radiation effects
  • Genotype
  • Humans
  • Middle Aged
  • Polymerase Chain Reaction
  • Polymorphism, Restriction Fragment Length
  • Radiation Tolerance / genetics*
  • Regression Analysis
  • X-ray Repair Cross Complementing Protein 1

Substances

  • DNA-Binding Proteins
  • X-ray Repair Cross Complementing Protein 1
  • X-ray repair cross complementing protein 3
  • XRCC1 protein, human
  • Deoxyribonuclease IV (Phage T4-Induced)
  • Carbon-Oxygen Lyases
  • APEX1 protein, human
  • DNA-(Apurinic or Apyrimidinic Site) Lyase