An unusual decarboxylative Maillard reaction between L-DOPA and D-glucose under biomimetic conditions: factors governing competition with Pictet-Spengler condensation

J Org Chem. 2001 Jul 27;66(15):5048-53. doi: 10.1021/jo010078d.

Abstract

In 0.1 M phosphate buffer at pH 7.4 and 37 degrees C, the tyrosine metabolite L-3,4-dihydroxyphenylalanine (L-DOPA) reacts smoothly with D-glucose to afford, besides diastereoisomeric tetrahydroisoquinolines 1 and 2 by Pictet-Spengler condensation, a main product shown to be the unexpected decarboxylated Amadori compound N-(1-deoxy-D-fructos-1-yl)-dopamine (3). Under similar conditions, dopamine gave only tetrahydroisoquinoline products 4 and 5, whereas L-tyrosine gave exclusively the typical Amadori compound 6. Fe(3+) and Cu(2+) ions, which accumulate in relatively high levels in parkinsonian substantia nigra, both inhibited the formation of 3. Cu(2+) ions also inhibited the formation of 1 and 2 to a similar degree, whereas Fe(3+) ions increased the yields of 1 and 2. Apparently, the formation of 3 would not be compatible with a simple decarboxylation of the initial Schiff base adduct, but would rather involve the decarboxylative decomposition of a putative oxazolidine-5-one intermediate assisted by the catechol ring. These results report the first decarboxylative Maillard reaction between an amino acid and a carbohydrate under biomimetic conditions and highlight the critical role of transition metal ions in the competition with Pictet-Spengler condensation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, High Pressure Liquid
  • Decarboxylation
  • Glucose / chemistry*
  • Levodopa / chemistry*
  • Magnetic Resonance Spectroscopy
  • Metals / chemistry
  • Spectrophotometry, Ultraviolet

Substances

  • Metals
  • Levodopa
  • Glucose