Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin

Biochemistry. 2001 Oct 16;40(41):12444-56. doi: 10.1021/bi010776s.

Abstract

PecE and PecF, the products of two phycoerythrocyanin lyase genes (pecE and pecF) of Mastigocladus laminosus (Fischerella), catalyze two reactions: (1) the regiospecific addition of phycocyanobilin (PCB) to Cys-alpha 84 of the phycoerythrocyanin alpha-subunit (PecA), and (2) the Delta 4-->Delta 2 isomerization of the PCB to the phycoviolobilin (PVB)-chromophore [Zhao et al. (2000) FEBS Lett. 469, 9-13]. The alpha-apoprotein (PecA) as well PecE and PecF were overexpressed from two strains of M. laminosus, with and without His-tags. The products of the spontaneous addition of PCB to PecA, and that of the reaction catalyzed by PecE/F, were characterized by their photochemistry and by absorption, fluorescence, circular dichroism of the four states obtained by irradiation with light (15-Z/E isomers of the chromophore) and/or modification of Cys-alpha 98/99 with thiol-directed reagents. The spontaneous addition leads to a 3(1)-Cys-PCB adduct, which is characteristic of allophycocyanins and phycocyanins, while the addition catalyzed by PecE and PecF leads to a 3(1)-Cys-PVB adduct which after purification was identical to alpha-PEC. The specificity and kinetics of the chromophore additions were investigated with respect to the structure of the bilin substrate: The 3-ethylidene-bilins, viz., PCB, its 18-vinyl analogue phytochromobilin, phycoerythrobilin and its dimethylester, react spontaneously to yield the conventional addition products (3-H, 3(1)-Cys), while the 3-vinyl-substituted bilins, viz., bilirubin and biliverdin, were inactive. Only phycocyanobilin and phytochromobilin are substrates to the addition-isomerization reaction catalyzed by PecE/F. The slow spontaneous addition of phycoerythrobilin is not influenced, and there is in particular no catalyzed isomerization to urobilin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Cyanobacteria / enzymology
  • Cyanobacteria / genetics
  • Lyases / chemistry
  • Lyases / genetics
  • Lyases / metabolism*
  • Molecular Structure
  • Photochemistry
  • Phycobilins
  • Phycocyanin / chemistry
  • Phycocyanin / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • Phycobilins
  • Recombinant Proteins
  • phycoerythrocyanin
  • Phycocyanin
  • Lyases
  • phycoerythrocyanin alpha-subunit phycobiliviolin lyase protein, bacteria