Purified canine CD34+Lin- marrow cells transduced with retroviral vectors give rise to long-term multi-lineage hematopoiesis

Biol Blood Marrow Transplant. 2001;7(10):543-51. doi: 10.1016/s1083-8791(01)70020-1.

Abstract

Human CD34+ cells have been shown to retain long-term hematopoietic engrafting potential in preclinical and clinical studies. However, recent studies of human and murine CD34- stem cells suggest that these are functionally important early progenitors. Using autologous transplantation, we investigated whether canine CD34 and CD34- marrow cells could be transduced and give rise to long-term hematopoiesis. CD34+Lin- and CD34-Lin- cell populations purified by fluorescence-activated cell sorting were separately cocultivated with retroviral vectors LN (CD34+Lin-) and LNY (CD34-Lin-), which carry the neomycin (neo) gene. After myeloablative total body irradiation (920 cGy), 3 dogs received transplants of both CD34+Lin- cells and CD34-Lin- cells and 2 dogs received only CD34-Lin- cells. Untransduced autologous marrow cells were given to ensure hematopoietic recovery. Using CFU-C assays, transduction efficiencies of CD34+Lin- cells ranged from 6% to 18% with no CFU-C formation from CD34-Lin- cells. PCR-based detection of the neo gene from WBCs was used to detect transduced cells weekly after transplantation. Additional PCR studies in 3 dogs given both CD34+Lin- and CD34-Lin- cells were performed on monocytes, granulocytes, and T cells (2 dogs, one at 7.5 months and the other at 9 months) and granulocytes (1 dog at 12 months). LN was detected up to 12 months posttransplantation in WBCs and mono-myeloid and lymphoid populations from 3 dogs receiving transplants of transduced CD34+Lin- cells. LNY was not detected at any time after transplantation in 5 dogs that received transduced CD34-Lin- cells. Whereas canine CD34+Lin- marrow cells contributed to long-term multilineage hematopoiesis, progeny of CD34-Lin- progenitor cells were not detected after transplantation in these experiments.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, CD34 / physiology*
  • Bone Marrow Cells / immunology
  • Bone Marrow Cells / metabolism
  • Cell Culture Techniques
  • Cell Lineage
  • Dogs
  • Genetic Vectors
  • Graft Survival / immunology
  • Hematopoiesis / immunology
  • Models, Animal
  • Retroviridae / genetics
  • Stem Cell Transplantation / methods*
  • Transduction, Genetic
  • Transplantation, Autologous / methods

Substances

  • Antigens, CD34