Influence of Auxin and Gibberellin on in Vivo Protein Synthesis during Early Pea Fruit Growth

Plant Physiol. 1996 Sep;112(1):53-59. doi: 10.1104/pp.112.1.53.

Abstract

Developing pea fruits (Pisum sativum L.) offer a unique opportunity to study growth and development in a tissue that is responsive to both gibberellins (GAs) and auxin (4-chloroindole-3-acetic acid[4-CI-IAA]). To begin a molecular analysis of the interaction of GAs and auxins in pea fruit development, in vivo labeling with [35S]methionine coupled with two-dimensional gel electrophoresis were used to characterize de novo synthesis of proteins during gibberellic acid (GA3)-, 4-CI-indoleacetic acid-, and seed-induced pea pericarp growth. The most significant and reproducible polypeptide changes were observed between molecular weights of 20 and 60. Comparing about 250 de novo synthesized proteins revealed that seed removal changed the pattern substantially. We identified one class of polypeptides that was uniquely seed induced and five classes that were affected by hormone treatment. The latter included 4-CI-IAA-induced, GA3-induced, GA3- and 4-CI-IAA-induced, 4-CI-IAA-repressed, and GA3- and 4-CI-IAA-repressed polypeptides. Similar patterns of protein expression were associated with both hormone treatments; however, changes unique to GA3 or 4-CI-IAA treatment also indicate that the effects of GA3 and 4-CI-IAA on this process are not equivalent. In general, application of 4-CI-IAA plus GA3 replaced the seed effects on pericarp protein synthesis, supporting our hypothesis that both hormones are involved in pea pericarp development.