Leptin-specific mechanisms for impaired liver regeneration in ob/ob mice after toxic injury

Gastroenterology. 2003 May;124(5):1451-64. doi: 10.1016/s0016-5085(03)00270-1.

Abstract

Background & aims: Profound impairment of liver regeneration in rodents with dysfunctional leptin signaling has been attributed to non-alcohol-induced fatty liver disorders (NAFLD). Our aim was to establish whether defective liver regeneration in ob/ob mice is a direct consequence of leptin-dependent, intracellular signaling mechanisms controlling cell-cycle regulation in hepatocytes.

Methods: After exposure to a single hepatotoxic dose of (CCl(4)), the regenerative response to hepatic injury was studied in leptin-deficient ob/ob and control mice. The effects of leptin supplementation (100 microg x kg(-1) x day(-1)) were examined. We assessed entry into and progression through the cell cycle and activation of key signaling intermediates and transcriptional regulators.

Results: CCl(4)-induced liver injury was equally severe in ob/ob and control mice. In leptin-deficient mice, it was associated with exaggerated activation of NF-kappa B and STAT3 during the priming phase, abrogation of tumor necrosis factor (TNF) and interleukin (IL)-6 release at the time of G1/S transition, and failure of hepatocyte induction of cyclin D1 and cell cycle entry. Leptin replacement corrected these defects in ob/ob mice by restoring TNF and IL-6 release and inducing cyclin D1. Hepatocytes entered S phase and progressed, as in wild-type mice, to vigorous mitosis and normal hepatic regenerative response. In ob/ob mice, low doses of TNF before CCl(4) also were associated with restitution of TNF release and proliferative capabilities.

Conclusions: Impaired liver regeneration in ob/ob mice is caused by leptin deficiency. We propose that altered cytokine production in ob/ob mice is part of the mechanisms responsible for impaired proliferation in response to hepatic injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Tetrachloride
  • Cell Division / drug effects
  • Cell Division / physiology
  • Chemical and Drug Induced Liver Injury / drug therapy*
  • Chemical and Drug Induced Liver Injury / pathology
  • Cyclin D1 / genetics
  • Fatty Liver / drug therapy
  • Fatty Liver / pathology
  • Interleukin-6 / metabolism
  • Leptin / deficiency
  • Leptin / genetics*
  • Leptin / pharmacology*
  • Liver / pathology
  • Liver / physiology
  • Liver Regeneration / drug effects*
  • Liver Regeneration / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Necrosis
  • Proliferating Cell Nuclear Antigen / genetics
  • Recombinant Proteins / pharmacology
  • Signal Transduction / drug effects
  • Signal Transduction / physiology
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Interleukin-6
  • Leptin
  • Proliferating Cell Nuclear Antigen
  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha
  • Cyclin D1
  • Carbon Tetrachloride