HPV induced cervical carcinogenesis: molecular basis and vaccine development

Zentralbl Gynakol. 2002 Nov;124(11):511-24. doi: 10.1055/s-2002-39579.

Abstract

Association of infection with papillomavirus and dysplasia of the cervix uteri has been firmly established. There are only few cervical cancers where no HPV DNA is detectable. The mechanism of epithelial cell immortalization by interaction with tumour suppressor genes p53 and pRb by viral oncogenes E6 and E7 is elucidated. Progression of the HPV infected cell to a malignant phenotype involves further modification of host gene expression and/or mutations. The appearance of chromosomal aberrations can lead to mutational inactivation or loss of tumour suppressor genes (TSG), activation and amplification of oncogenes, with importance for the process of carcinogenesis. Oncogene amplification, with exception of few reports, seems not to be a major mechanism in cervical carcinogenesis. In contrast, cytogenetic and loss of heterozygosity (LOH) results from CIN and invasive cancer demonstrate alterations at specific chromosomal regions, pointing at localisation of TSG. Genetic alterations at chromosomes 3p, 6p, 1lq were frequently found early in tumour development Primary invasive carcinoma showed additional allelic losses at chromosome arms 6q, 17p and 18q. Useful biological diagnostic and prognostic markers for high-risk HPV infection and malignant progression may be p16NK4 p27Kip, and NET-I/C4.8. Putative senescence genes relevant for HPV-induced carcinogenesis are localized on chromosomes 2, 4 and 10. Genes for Telomerase suppression are presumably located on chromosomes 3, 4 and 6. Natural immune responses to HPV infection exist Therefore, immune therapy is an attractive possibility for prevention and therapy of HPV infection. To date, vaccine development has reached clinical evaluation. Prophylaxis aims at the induction of virus neutralizing antibodies to capsid proteins. Virus-like particle vaccines are currently tested in clinical trials. Due to the long lag period between infection and clinical manifestation trials will take a long time until conclusive results are obtained. Mandatory expression of viral and perhaps certain cellular genes in infected epithelial and tumour cells offers targets for therapeutic approaches. Since most dysplasia clears spontaneously the viral infection is immunogenic to some extent. However, in some individuals the immune response has to be stimulated by vaccination in order to be effective. Several strategies are being tested in clinical trials and others are in preclinical development The task will be to circumvent immunosuppressive features of the HPV infected cells.

Publication types

  • Review

MeSH terms

  • Chromosome Mapping
  • Female
  • Humans
  • Loss of Heterozygosity
  • Papillomaviridae*
  • Papillomavirus Infections / physiopathology*
  • Papillomavirus Vaccines*
  • Tumor Virus Infections / physiopathology*
  • Uterine Cervical Neoplasms / genetics
  • Uterine Cervical Neoplasms / immunology
  • Uterine Cervical Neoplasms / virology*
  • Viral Vaccines*

Substances

  • Papillomavirus Vaccines
  • Viral Vaccines