Oxygen uptake during swimming in a hypobaric hypoxic environment

Eur J Appl Physiol Occup Physiol. 1992;65(2):192-6. doi: 10.1007/BF00705080.

Abstract

The purpose of this study was to determine oxygen uptake (VO2) at various water flow rates and maximal oxygen uptake (VO2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m.s-1 and was increased by 0.05 m.s-1 every 2 min up to 1.00 m.s-1 and then by 0.05 m.s-1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production (VCO2), pulmonary ventilation (VE) and tidal volume (VT) were significantly greater in H than in N. There were no significant differences in the response of submaximal VO2, heart rate (fc) or respiratory frequency (fR) between N and H. Maximal VE, fR, VT, fc, blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l.min-1] was significantly lower by 12.0% (SD 3.4)% than that in N [4.15 (SD 0.18) l.min-1]. This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.

MeSH terms

  • Adult
  • Air Pressure
  • Heart Rate / physiology
  • Humans
  • Hypoxia / physiopathology*
  • Lactates / blood
  • Male
  • Oxygen Consumption / physiology*
  • Swimming*
  • Ventilation-Perfusion Ratio / physiology

Substances

  • Lactates