Could the tyrosine-histidine ligand to CuB in cytochrome c oxidase be coordinatively labile? Implications from a quantum chemical model study of histidine substitutional lability and the effects of the covalent tyrosine-histidine cross-link

J Biol Inorg Chem. 2003 Nov;8(8):855-65. doi: 10.1007/s00775-003-0488-x. Epub 2003 Oct 15.

Abstract

Density functional theory calculations have been used to evaluate the effects of inter-ring interactions within a covalently linked histidine-tyrosine cofactor such as that which is a ligand to the Cu(B) centre in cytochrome c oxidases and to investigate the energetics of histidine substitution at the Cu(B) centre. Small, but significant, perturbations of the redox potentials and/or p K(a) values of the histidine imidazole, the tyrosine phenol and the copper ion are found. The Cu(B)-N(cofactor) bond is estimated to be weaker than the Cu(B)-N(histidine coligand) bonds in the Cu(B)(I) state and in the Cu(B) (II) state when the cofactor is oxidized, by approximately 13 kJ/mol and approximately 23 kJ/mol, respectively. The calculations reveal that displacement of a histidine ligand from the Cu(B) centre, as is suggested in proposals of "histidine cycle" mechanisms for proton pumping in cytochrome c oxidases, is only energetically feasible if accompanied by protonation of the histidine imidazole and coupled to an endothermic process. It is proposed that the histidine-tyrosine cofactor ought to be considered as the substitutionally labile ligand to Cu(B) as the covalent crosslink would ensure displacement of the cofactor from Cu(B)-driven helix deformation. It is estimated that this process could store up to approximately 70 kJ/mol, which, based upon thermodynamic considerations, is sufficient for the pumping of two protons in the later steps (reductive phase) of the catalytic cycle. Ramifications of this proposition for the mechanism of proton pumping in cytochrome c oxidases are discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution*
  • Copper / chemistry*
  • Electron Transport Complex IV / chemistry*
  • Histidine / chemistry*
  • Ligands
  • Models, Chemical*
  • Tyrosine / chemistry*

Substances

  • Ligands
  • Tyrosine
  • Histidine
  • Copper
  • Electron Transport Complex IV