Penning ionization electron spectroscopy of C6H6 by collision with He*(2 3 S) metastable atoms and classical trajectory calculations: optimization of ab initio model potentials

J Chem Phys. 2005 Jan 22;122(4):44303. doi: 10.1063/1.1834900.

Abstract

The potential energy surface of benzene (C(6)H(6)) with a He*(2(3)S) atom was obtained by comparison of experimental data in collision-energy-resolved two-dimensional Penning ionization electron spectroscopy with classical trajectory calculations. The ab initio model interaction potentials for C(6)H(6)+He*(2(3)S) were successfully optimized by the overlap expansion method; the model potentials were effectively modified by correction terms proportional to the overlap integrals between orbitals of the interacting system, C(6)H(6) and He*(2(3)S). Classical trajectory calculations with optimized potentials gave excellent agreement with the observed collision-energy dependence of partial ionization cross sections. Important contributions to corrections were found to be due to interactions between unoccupied molecular orbitals and the He*2s orbital. A C(6)H(6) molecule attracts a He*(2(3)S) atom widely at the region where pi electrons distribute, and the interaction of -80 meV (ca. -1.8 kcal/mol) just cover the carbon hexagon. The binding energy of a C(6)H(6) molecule and a He* atom was 107 meV at a distance of 2.40 A on the sixfold axis from the center of a C(6)H(6) molecule, which is similar to that of C(6)H(6)+Li and is much larger than those of the C(6)H(6)+[He,Ne,Ar] systems.