Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor

J Immunol. 2005 Jun 15;174(12):7516-23. doi: 10.4049/jimmunol.174.12.7516.

Abstract

Immunotherapy of cancer is attractive because of its potential for specificity and limited side effects. The efficacy of this approach may be improved by providing adjuvant signals and an inflammatory environment for immune cell activation. We evaluated antitumor immune responses in mice after treatment of OVA-expressing B16-F0 tumors with single (15 Gy) or fractionated (5 x 3 Gy) doses of localized ionizing radiation. Irradiated mice had cells with greater capability to present tumor Ags and specific T cells that secreted IFN-gamma upon peptide stimulation within tumor-draining lymph nodes than nonirradiated mice. Immune activation in tumor-draining lymph nodes correlated with an increase in the number of CD45(+) cells infiltrating single dose irradiated tumors compared with nonirradiated mice. Similarly, irradiated mice had increased numbers of tumor-infiltrating lymphocytes that secreted IFN-gamma and lysed tumor cell targets. Peptide-specific IFN-gamma responses were directed against both the class I and class II MHC-restricted OVA peptides OVA(257-264) and OVA(323-339), respectively, as well as the endogenous class I MHC-restricted B16 tumor peptide tyrosinase-related protein 2(180-188). Adoptive transfer studies indicated that the increased numbers of tumor Ag-specific immune cells within irradiated tumors were most likely due to enhanced trafficking of these cells to the tumor site. Together these results suggest that localized radiation can increase both the generation of antitumor immune effector cells and their trafficking to the tumor site.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigen Presentation / immunology
  • Antigen Presentation / radiation effects
  • Antigens, Neoplasm / immunology*
  • Antigens, Neoplasm / radiation effects
  • Cell Line, Tumor
  • Cell Movement / immunology
  • Cell Movement / radiation effects*
  • Cell Proliferation / radiation effects
  • Cytotoxicity Tests, Immunologic
  • Dose-Response Relationship, Radiation
  • Lymph Nodes / pathology
  • Lymph Nodes / radiation effects
  • Lymphocyte Activation / immunology
  • Lymphocyte Activation / radiation effects*
  • Lymphocyte Count
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Lymphocytes, Tumor-Infiltrating / pathology*
  • Lymphocytes, Tumor-Infiltrating / radiation effects*
  • Melanoma, Experimental / immunology*
  • Melanoma, Experimental / pathology
  • Melanoma, Experimental / radiotherapy*
  • Mice
  • Mice, Inbred A
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Ovalbumin / administration & dosage
  • Ovalbumin / immunology
  • T-Lymphocytes, Cytotoxic / cytology
  • T-Lymphocytes, Cytotoxic / immunology
  • T-Lymphocytes, Cytotoxic / radiation effects*

Substances

  • Antigens, Neoplasm
  • Ovalbumin