GABA signalling: therapeutic targets for epilepsy, Parkinson's disease and Huntington's disease

Expert Opin Ther Targets. 2001 Apr;5(2):219-39. doi: 10.1517/14728222.5.2.219.

Abstract

Temporal lobe epilepsy (TLE), Parkinson's disease (PD) and Huntington's disease (HD) are neurodegenerative disorders that involve disruptions in gamma-amino butyric acid (GABA) signalling. GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). TLE seizures reflect excess excitation, which may result from local inhibitory circuit dysfunction. PD devastates the input to striatal GABAergic neurones and HD destroys striatal GABAergic neurones. Controlling GABA delivery to specific brain areas should benefit each of these diseases. The molecules responsible for GABA release and signalling are ideal targets for new therapies. In this paper, we discuss the role of GABA in the circuitry affected by each of these diseases and suggest potential sites for intervention. GABA is unique among neurotransmitters because it can be synthesised by either of two related enzymes. Intracellular GABA is found throughout the cytosol and in synaptic vesicles. GABA can be released either through exocytosis, or via the plasma membrane transporter. The synthesising enzyme probably determines the intracellular location and hence the mechanism for GABA release. Directing GABA synthesis, degradation, transport or receptors can control GABA signalling. We propose that new drugs and devices aimed at GABA synthesis, release and binding will offer novel and highly effective treatments for neurodegenerative diseases.