Possible stimuli for strength and power adaptation: acute mechanical responses

Sports Med. 2005;35(11):967-89. doi: 10.2165/00007256-200535110-00004.

Abstract

A great deal of literature has investigated the effects of various resistance training programmes on strength and power changes. Surprisingly, however, our understanding of the stimuli that affect adaptation still remains relatively unexplained. It is thought that strength and power adaptation is mediated by mechanical stimuli, that is the kinematics and kinetics associated with resistance exercise (e.g. forces, contraction duration, power and work), and their interaction with other hormonal and metabolic factors. However, the effect of different combinations of kinematic and kinetic variables and their contribution to adaptation is unclear. The mechanical response to single repetitions has been investigated by a number of researchers; however, it seems problematic to extrapolate the findings of this type of research to the responses associated with a typical resistance training session. That is, resistance training is typified by multiple repetitions, sets and exercises, rest periods of varying durations and different movement techniques (e.g. controlled and explosive). Understanding the mechanical stimuli afforded by such loading schemes would intuitively lead to a better appreciation of how various mechanical stimuli affect adaptation. It will be evident throughout this article that very little research has adopted such an approach; hence our understanding in this area remains rudimentary at best. One should therefore remain cognizant of the limitations that exist in the interpretation of research in this field. We contend that strength and power research needs to adopt a set kinematic and kinetic analysis to improve our understanding of how to optimise strength and power.

Publication types

  • Review

MeSH terms

  • Adaptation, Physiological*
  • Biomechanical Phenomena
  • Humans
  • Kinetics
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / physiology*
  • Weight Lifting / physiology*