Enzymatic amplification involving glycosyltransferases forms the basis for the increased size of asparagine-linked glycans at the surface of NIH 3T3 cells expressing the N-ras proto-oncogene

J Biol Chem. 1991 Nov 15;266(32):21674-80.

Abstract

Expression of ras oncogenes in NIH 3T3 fibroblasts results in the acquisition by these cells of an invasive potential concomitant with the appearance of cell surface asparagine-linked complex-type glycan structures of a higher average molecular weight (Bolscher, J.G. M., van der Bijl, M. M. W., Neefjes, J. J., Hall, A., Smets, L.A., and Ploegh, H.L. (1988) EMBO J. 7, 3361-3368). We have investigated the enzymatic basis for the altered glycosylation by assessing the activities of all major Golgi glycosyltransferases involved in the synthesis of these structures. Use was made of a stable transfectant cell line (T15) containing the N-ras-protooncogene under the control of a glucocorticoid-inducible mouse mammary tumor virus promoter. Upon induction of the ras gene with dexamethasone: 1) the levels of N-acetylglucosaminyltransferase I and II were essentially unaltered, indicating an unaffected potential to synthesize complex-type glycans; 2) the activities of the branching N-acetylglucosaminyltransferase III and V were elevated 2- to 2.5-fold suggesting the formation of increased amounts of bisected glycans and of structures carrying a Gal beta 1----GlcNAc beta 1----6Man-branch; 3) the levels of the elongating beta 4-galactosyltransferase and beta 3-N-acetylglucosaminyl-transferase were increased 5- to 7-fold indicating a strongly enhanced capacity to synthesize polylactosaminoglycan chains; 4) the level of the major chain-terminating enzyme, alpha 3-galactosyltransferase, was slightly decreased (0.7-fold), whereas those of the alpha 3- and alpha 6-sialyltransferases were slightly elevated (1.3- and 2-fold, respectively), suggesting a shift from termination by alpha-galactosyl residues to termination by sialic acid moieties. Studies on the acceptor specificities of the different glycosyltransferases indicate that these changes occur in a coordinated manner in which the effects of altered glycosyltransferase expression levels amplify each other. Analysis of the size of cell surface complex-type glycopeptides before and after digestion with neuraminidase and endo-beta-galactosidase suggested an increased sialic acid density, an increase in the number and/or length of polylactosaminoglycan chains, and an increased branching of the glycans upon N-ras induction. The enzymatic results explain these structural changes and allow us to define the alterations in glycosylation pathways associated with ras expression.

MeSH terms

  • 3T3 Cells
  • Animals
  • Asparagine
  • Carbohydrate Conformation
  • Carbohydrate Sequence
  • Genes, ras*
  • Glycopeptides / isolation & purification*
  • Hexosyltransferases / metabolism*
  • Mammary Tumor Virus, Mouse / genetics
  • Membrane Glycoproteins / biosynthesis
  • Membrane Glycoproteins / genetics*
  • Mice
  • Molecular Sequence Data
  • Oligosaccharides / biosynthesis*
  • Protein Processing, Post-Translational*
  • Repetitive Sequences, Nucleic Acid
  • Substrate Specificity
  • Transfection*

Substances

  • Glycopeptides
  • Membrane Glycoproteins
  • Oligosaccharides
  • Asparagine
  • Hexosyltransferases