Mechanisms underlying the perceived angular velocity of a rigidly rotating object

Vision Res. 2006 Sep;46(18):2877-93. doi: 10.1016/j.visres.2006.02.026. Epub 2006 May 2.

Abstract

The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Form Perception*
  • Humans
  • Lighting
  • Motion Perception*
  • Optical Illusions*
  • Photic Stimulation / methods
  • Rotation