Relative efficiencies of the maximum-parsimony and distance-matrix methods of phylogeny construction for restriction data

Mol Biol Evol. 1991 May;8(3):356-65. doi: 10.1093/oxfordjournals.molbev.a040648.

Abstract

The relative efficiencies of the maximum-parsimony (MP), UPGMA, and neighbor-joining (NJ) methods in obtaining the correct tree (topology) for restriction-site and restriction-fragment data were studied by computer simulation. In this simulation, six DNA sequences of 16,000 nucleotides were assumed to evolve following a given model tree. The recognition sequences of 20 different six-base restriction enzymes were used to identify the restriction sites of the DNA sequences generated. The restriction-site data and restriction-fragment data thus obtained were used to reconstruct a phylogenetic tree, and the tree obtained was compared with the model tree. This process was repeated 300 times. The results obtained indicate that when the rate of nucleotide substitution is constant the probability of obtaining the correct tree (Pc) is generally higher in the NJ method than in the MP method. However, if we use the average topological deviation from the model tree (dT) as the criterion of comparison, the NJ and MP methods are nearly equally efficient. When the rate of nucleotide substitution varies with evolutionary lineage, the NJ method is better than the MP method, whether Pc or dT is used as the criterion of comparison. With 500 nucleotides and when the number of nucleotide substitutions per site was very small, restriction-site data were, contrary to our expectation, more useful than sequence data. Restriction-fragment data were less useful than restriction-site data, except when the sequence divergence was very small. UPGMA seems to be useful only when the rate of nucleotide substitution is constant and sequence divergence is high.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Computer Simulation
  • DNA / genetics
  • Methods
  • Mutation
  • Phylogeny*
  • Polymorphism, Restriction Fragment Length

Substances

  • DNA