Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes

Circ Res. 2006 Aug 18;99(4):398-406. doi: 10.1161/01.RES.0000236756.06252.13. Epub 2006 Jul 13.

Abstract

Previous studies in transgenic mice and with isolated ryanodine receptors (RyR) have indicated that Ca2+-calmodulin-dependent protein kinase II (CaMKII) can phosphorylate RyR and activate local diastolic sarcoplasmic reticulum (SR) Ca2+ release events (Ca2+ sparks) and RyR channel opening. Here we use relatively controlled physiological conditions in saponin-permeabilized wild type (WT) and phospholamban knockout (PLB-KO) mouse ventricular myocytes to test whether exogenous preactivated CaMKII or endogenous CaMKII can enhance resting Ca2+ sparks. PLB-KO mice were used to preclude ancillary effects of CaMKII mediated by phospholamban phosphorylation. In both WT and PLB-KO myocytes, Ca2+ spark frequency was increased by both preactivated exogenous CaMKII and endogenous CaMKII. This effect was abolished by CaMKII inhibitor peptides. In contrast, protein kinase A catalytic subunit also enhanced Ca2+ spark frequency in WT, but had no effect in PLB-KO. Both endogenous and exogenous CaMKII increased SR Ca2+ content in WT (presumably via PLB phosphorylation), but not in PLB-KO. Exogenous calmodulin decreased Ca2+ spark frequency in both WT and PLB-KO (K0.5 approximately 100 nmol/L). Endogenous CaMKII (at 500 nmol/L [Ca2+]) phosphorylated RyR as completely in <4 minutes as the maximum achieved by preactivated exogenous CaMKII. After CaMKII activation Ca2+ sparks were longer in duration, and more frequent propagating SR Ca2+ release events were observed. We conclude that CaMKII-dependent phosphorylation of RyR by endogenous associated CaMKII (but not PKA-dependent phosphorylation) increases resting SR Ca2+ release or leak. Moreover, this may explain the enhanced SR diastolic Ca2+ leak and certain triggered arrhythmias seen in heart failure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / physiology*
  • Calcium-Binding Proteins / deficiency
  • Calcium-Binding Proteins / genetics
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Calmodulin / physiology*
  • Enzyme Activation
  • Heart Ventricles / enzymology
  • Kinetics
  • Mice
  • Mice, Knockout
  • Muscle Cells / enzymology
  • Muscle Cells / physiology*
  • Phosphorylation
  • Ryanodine Receptor Calcium Release Channel / metabolism*
  • Sarcoplasmic Reticulum / physiology
  • Ventricular Function*

Substances

  • Calcium-Binding Proteins
  • Calmodulin
  • Ryanodine Receptor Calcium Release Channel
  • phospholamban
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Calcium