Functional inactivation of the KLF6 tumor suppressor gene by loss of heterozygosity and increased alternative splicing in glioblastoma

Int J Cancer. 2007 Sep 15;121(6):1390-5. doi: 10.1002/ijc.22809.

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor and possesses a high incidence of 10p loss. The KLF6 (Kruppel-like transcription factor) tumor suppressor gene on 10p15 is inactivated by loss of heterozygosity (LOH) and/or somatic mutation in a number of human cancers and forced expression of KLF6 in GBM lines inhibits their growth and transformation. In addition, increased expression of its alternatively spliced, cytoplasmic isoform KLF6-SV1 has now been shown to play a role in cancer pathogenesis. On the basis of these findings we examined the role of KLF6 and KLF6-SV1 in the development and progression of GBM. LOH analysis of 17 primary GBM patient samples using KLF6-specific microsatellite markers revealed that 88.2% (15/17) had LOH of the KLF6 locus. Interestingly, no KLF6 somatic mutations were identified. RNA analysis revealed concomitant decreases in all primary GBM tumors (n = 11) by approximately 80% in KLF6 expression (p < 0.001) coupled with increased KLF6-SV1 expression (p < 0.001) when compared to normal astrocytes. To determine the biological relevance of these findings, we examined the effect of KLF6 expression and KLF6-SV1 knockdown in A235 and CRL2020 cell lines. Reconstitution of KLF6 decreased cell proliferation by almost 50%, whereas targeted KLF6 reduction increased cell proliferation 2.5-4.5 fold. Conversely, targeted KLF6-SV1 reduction decreased cell proliferation by 50%. Taken together, our findings demonstrate that KLF6 allelic imbalance and decreased KLF6 and increased KLF6-SV1 expression are common findings in primary GBM tumors, and these changes have antagonistic effects on the regulation of cellular proliferation in GBM cell lines.

MeSH terms

  • Alternative Splicing*
  • Blotting, Western
  • Brain Neoplasms / genetics*
  • Cell Line, Tumor
  • Cell Proliferation
  • Gene Expression
  • Genes, Tumor Suppressor / physiology
  • Glioblastoma / genetics*
  • Humans
  • Kruppel-Like Factor 6
  • Kruppel-Like Transcription Factors / genetics*
  • Loss of Heterozygosity*
  • Proto-Oncogene Proteins / genetics*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • KLF6 protein, human
  • Kruppel-Like Factor 6
  • Kruppel-Like Transcription Factors
  • Proto-Oncogene Proteins