Estrogen receptor alpha/beta isoforms, but not betacx, modulate unique patterns of gene expression and cell proliferation in Hs578T cells

J Cell Biochem. 2007 Aug 1;101(5):1125-47. doi: 10.1002/jcb.21205.

Abstract

The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / pathology
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Doxycycline / pharmacology
  • Estrogen Receptor alpha / genetics
  • Estrogen Receptor alpha / metabolism*
  • Estrogen Receptor beta / genetics
  • Estrogen Receptor beta / metabolism*
  • Flow Cytometry
  • Gene Expression Regulation, Neoplastic* / drug effects
  • Genes, Neoplasm
  • Humans
  • Oligonucleotide Array Sequence Analysis
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Tamoxifen / analogs & derivatives
  • Tamoxifen / pharmacology

Substances

  • Estrogen Receptor alpha
  • Estrogen Receptor beta
  • Protein Isoforms
  • Tamoxifen
  • afimoxifene
  • Doxycycline