Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth

Cancer Res. 2008 Jan 15;68(2):521-9. doi: 10.1158/0008-5472.CAN-07-3217.

Abstract

Vascular endothelial growth factor (VEGF) is a potent proangiogenic protein that activates VEGF receptor (VEGFR) tyrosine kinases expressed by vascular endothelial cells. We previously showed that one of these receptors, VEGFR-2, has a truncated soluble form (sVEGFR-2) that can be detected in mouse and human plasma. Because activation of VEGFR-2 plays an important role in tumor angiogenesis, clinical interest in monitoring plasma sVEGFR-2 levels in cancer patients has focused on its potential exploitation as a surrogate biomarker for disease progression as well as assessing efficacy/activity of antiangiogenic drugs, particularly those that target VEGF or VEGFR-2. However, no preclinical studies have been done to study sVEGFR-2 during tumor growth or the mechanisms involved in its modulation. Using spontaneously growing tumors and both localized and metastatic human tumor xenografts, we evaluated the relationship between sVEGFR-2 and tumor burden as well as underlying factors governing protein level modulation in vivo. Our results show an inverse relationship between the levels of sVEGFR-2 and tumor size. Furthermore, using various methods of VEGF overexpression in vivo, including cell transfection and adenoviral delivery, we found plasma sVEGFR-2 decreases to be mediated largely by tumor-derived VEGF. Finally, in vitro studies indicate VEGF-mediated sVEGFR-2 modulation is the result of ligand-induced down-regulation of the VEGFR-2 from the cell surface. Taken together, these findings may be pertinent to further clinical exploitation of plasma sVEGFR-2 levels as a surrogate biomarker of VEGF-dependent tumor growth as well as an activity indicator of antiangiogenic drugs that target the VEGFR system.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / genetics
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology*
  • Adenoviridae
  • Animals
  • Biomarkers, Tumor / blood*
  • Cell Proliferation*
  • Female
  • HT29 Cells
  • Humans
  • Male
  • Mammary Neoplasms, Experimental / genetics
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Neoplasm Transplantation
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology*
  • Solubility
  • Transduction, Genetic
  • Transplantation, Heterologous
  • Tumor Burden* / genetics
  • Tumor Cells, Cultured
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / physiology*
  • Vascular Endothelial Growth Factor Receptor-2 / blood*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • Biomarkers, Tumor
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factor Receptor-2