Trans-skull ultrasound therapy: the feasibility of using image-derived skull thickness information to correct the phase distortion

IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(3):752-5. doi: 10.1109/58.764862.

Abstract

Recent papers have shown that focused ultrasound therapy may be feasible in the brain through an intact human skull by using phased arrays to correct the phase distortion induced by the skull bone. The hypothesis of this study is that the required phase shifts for the phased array can be calculated from the skull shape and thickness provided by modern imaging techniques. The shape and thickness of a piece of human skull was traced from the serial images and used in a theoretical model to calculate the phase distribution for a phased array. A 76-element phased array was manufactured and used in the tests. The piece of skull and the transducer array were positioned in a waterbath, and the ultrasound field distributions were mapped with and without the phase correction. The image-derived phase correction produced a sharp focus through the skull. These results showed that ultrasound brain therapy may be executed completely noninvasively through an intact skull by using a phased array and the skull thickness information derived from MRI scans.

Publication types

  • Letter