Left ventricular diastolic dysfunction limits use of maximum systolic elastance as an index of contractile function

Circulation. 1991 Feb;83(2):674-80. doi: 10.1161/01.cir.83.2.674.

Abstract

We tested the hypothesis that maximum systolic elastance (Emax) fails to detect a decline in left ventricular (LV) contractile function when diastolic dysfunction is present. Canine hearts were studied in an isolated blood-perfused heart apparatus (isovolumic LV); contractile dysfunction was produced by 60 or 90 minutes of global ischemia, followed by 90 minutes of reperfusion. Nine normal hearts underwent 60 minutes of ischemia, and five underwent 90 minutes of ischemia. After the ischemia-reperfusion sequence, developed pressure, pressure-volume area, and myocardial ATP level were significantly less than those at baseline in all 14 hearts. In the group undergoing 60 minutes of ischemia, LV diastolic pressure did not increase, whereas Emax decreased from 5.2 +/- 2.5 to 2.9 +/- 1.4 mm Hg/ml (p less than 0.05). In the group undergoing 90 minutes of ischemia, diastolic pressure increased (from 10 +/- 2 to 37 +/- 20 mm Hg, p less than 0.05), and Emax did not change significantly (from 5.1 +/- 4.3 to 4.3 +/- 2.5 mm Hg/ml). A second series of experiments was performed in 13 hearts with pressure-overload hypertrophy (aortic-band model with echocardiography and catheterization studies before the ischemia-reperfusion protocol). Five had evidence for pump failure, whereas eight remained compensated. After 60 minutes of ischemia and 90 minutes of reperfusion, developed pressure, pressure-volume area, and myocardial ATP level were significantly less than those at baseline in all 13 hearts. In the group with compensated LV hypertrophy, LV diastolic pressure did not change, whereas Emax decreased from 6.9 +/- 3.0 to 3.1 +/- 2.3 mm Hg/ml (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Cardiomegaly / etiology
  • Cardiomegaly / physiopathology*
  • Dogs
  • Myocardial Contraction / physiology*
  • Myocardial Reperfusion Injury / etiology
  • Myocardial Reperfusion Injury / physiopathology*
  • Myocardium / metabolism
  • Time Factors
  • Ventricular Function, Left / physiology*

Substances

  • Adenosine Triphosphate