Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells

Autophagy. 2008 Jul;4(5):669-79. doi: 10.4161/auto.6083. Epub 2008 Apr 10.

Abstract

Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Autophagy / genetics*
  • Autophagy / physiology
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Cell Survival / genetics
  • Female
  • Gene Expression Regulation, Neoplastic / genetics*
  • Gene Silencing / physiology*
  • Growth Inhibitors / physiology
  • Humans
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-bcl-2 / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-bcl-2 / biosynthesis
  • Proto-Oncogene Proteins c-bcl-2 / genetics*
  • RNA Interference / physiology*
  • RNA, Small Interfering / physiology*

Substances

  • Growth Inhibitors
  • MAS1 protein, human
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Small Interfering