Strain-specific sequences required for yeast [PSI+] prion propagation

Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13345-50. doi: 10.1073/pnas.0802215105. Epub 2008 Aug 29.

Abstract

Amyloid polymorphism underlies the prion strain phenomenon where a single protein polypeptide adopts different chain-folding patterns to form self-propagating cross-beta structures. Three strains of the yeast prion [PSI], namely [VH], [VK], and [VL], have been previously characterized and are amyloid conformers of the yeast translation termination factor Sup35. Here we define specific sequences of the Sup35 protein that are necessary for in vivo propagation of each of these prion strains. By sequential substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment, specific mutations have been identified that interfere selectively with the propagation of each of the three prion strains in yeast: the [VH] strain requires amino acid residues 7-21; [VK] requires residues 9-37; and [VL] requires residues 5 to at least 52. Minimal polypeptide segments capable of encoding prion conformations were defined by assembly of recombinant Sup35 fragments on purified prion nuclei to form amyloid fibers in vitro, whose infectivity was assayed in yeast. For the [VK] and [VL] strains, the minimal fragments approximately coincide with the strain-specific sequences defined by mutations of the N-terminal portion of the intact Sup35 (1-685); and for the [VH] strain, a longer Sup (1-53) fragment is required. Polymorphic structures of other amyloids might similarly involve different stretches of polypeptides to form cross-beta amyloid cores with distinct molecular recognition surfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Benzothiazoles
  • Glycine / chemistry
  • Peptide Termination Factors
  • Prions / chemistry*
  • Prions / classification
  • Prions / genetics
  • Prions / metabolism*
  • Proline / chemistry
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / classification
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Thiazoles / metabolism

Substances

  • Benzothiazoles
  • Peptide Termination Factors
  • Prions
  • SUP35 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Thiazoles
  • thioflavin T
  • Proline
  • Glycine