Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model

Brain Res. 2009 Jan 9:1247:196-211. doi: 10.1016/j.brainres.2008.10.015. Epub 2008 Nov 1.

Abstract

Pretreatment of ovarectomized rats with estrogen shows long-term protection via activation of the estrogen receptor (ER). However, it remains unknown whether activation of the ER can provide protection against early neuronal damage when given acutely. We simulated ischemic conditions by applying oxygen and glucose deprived (OGD) solution to acute male rat hippocampal slices and examined the neuronal electrophysiological changes. Pyramidal neurons and interneurons showed a time-dependent membrane potential depolarization and reduction in evoked action potential frequency and amplitude over a 10 to 15 min OGD exposure. These changes were largely suppressed by 10 microM TAM. The TAM effect was neuron-specific as the OGD-induced astrocytic membrane potential depolarization was not altered. The TAM effect was mediated through ER activation because it could be simulated by 17beta-estradiol and was completely inhibited by the ER inhibitor ICI 182, 780, and is therefore an example of TAM's selective estrogen receptor modulator (SERM) action. We further show that TAM's effects on OGD-induced impairment of neuronal excitability was largely due to activation of neuroprotective BK channels, as the TAM effect was markedly attenuated by the BK channel inhibitor paxilline at 10 microM. TAM also significantly reduced the frequency and amplitude of AMPA receptor mediated spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons which is an early consequence of OGD. Altogether, this study demonstrates that both 17beta-estradiol and TAM attenuate neuronal excitability impairment early on in a simulated ischemia model via ER activation mediated potentiation of BK K(+) channels and reduction in enhanced neuronal AMPA/NMDA receptor-mediated excitotoxicity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Animals
  • Cytoprotection / drug effects
  • Cytoprotection / physiology
  • Estradiol / metabolism
  • Estradiol / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Hippocampus / drug effects*
  • Hippocampus / metabolism
  • Hippocampus / physiopathology
  • Hypoxia-Ischemia, Brain / drug therapy*
  • Hypoxia-Ischemia, Brain / metabolism
  • Hypoxia-Ischemia, Brain / physiopathology
  • Large-Conductance Calcium-Activated Potassium Channels / antagonists & inhibitors
  • Large-Conductance Calcium-Activated Potassium Channels / metabolism
  • Male
  • Neurons / drug effects*
  • Neurons / metabolism
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use
  • Organ Culture Techniques
  • Potassium Channel Blockers / pharmacology
  • Pyramidal Cells / drug effects
  • Pyramidal Cells / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / drug effects
  • Receptors, AMPA / metabolism
  • Receptors, Estrogen / agonists*
  • Receptors, Estrogen / metabolism
  • Selective Estrogen Receptor Modulators / pharmacology
  • Selective Estrogen Receptor Modulators / therapeutic use
  • Tamoxifen / pharmacology*
  • Tamoxifen / therapeutic use

Substances

  • Large-Conductance Calcium-Activated Potassium Channels
  • Neuroprotective Agents
  • Potassium Channel Blockers
  • Receptors, AMPA
  • Receptors, Estrogen
  • Selective Estrogen Receptor Modulators
  • Tamoxifen
  • Estradiol