Effects of IGF-I and glucose on protein and proteoglycan synthesis by human fetal mesangial cells in culture

Diabetes. 1991 Oct;40(10):1346-54. doi: 10.2337/diab.40.10.1346.

Abstract

Abnormalities in proteoglycan metabolism have been implicated in the pathogenesis of diabetic nephropathy. Whether hyperglycemia plays a direct role in these events is unknown. To evaluate the effects of high glucose concentrations and insulinlike growth factor I (IGF-I) on kidney proteoglycan and protein metabolism, we incubated quiescent, subconfluent human fetal mesangial cells for 24 h in serum-free media containing either physiological (5.6-mM) or elevated (25-mM) glucose concentrations with or without 1.3 x 10(-9) M IGF-I. In the presence of physiological glucose concentrations, IGF-I stimulated incorporation of [3H]leucine into protein and [35S]sulfate or [3H]glucosamine into proteoglycans. High glucose concentrations significantly amplified IGF-I-mediated stimulation of protein synthesis but totally abolished IGF-I-induced proteoglycan synthesis. The hydrodynamic size and proportions of heparan-35SO4 and chondroitin/dermatan-35SO4 proteoglycans in all experimental media were the same. However, high glucose concentrations decreased the iduronic acid content of dermatan-35SO4. In separate experiments, quiescent cells were cultured for 7 days in media supplemented with 2% fetal calf serum. IGF-I had no effect on mesangial cell proliferation, but as cells reached confluence, high glucose concentrations significantly inhibited cell proliferation. This inhibition was not mimicked by isosmolar concentrations of mannitol. After 7 days, uptake of radioactive precursors into proteoglycans and proteins over 24 h was similar under all culture conditions. However, IGF-I decreased the ratio of [35S]sulfate to [3H]glucosamine in proteoglycans and their glycosaminoglycan side chains. This difference persisted in disaccharides derived by chondroitin ABC lyase digestion of dermatan-35SO4.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Division / drug effects
  • Cells, Cultured
  • Fetus
  • Glomerular Mesangium / drug effects*
  • Glomerular Mesangium / metabolism
  • Glucose / pharmacology*
  • Glycoproteins / biosynthesis
  • Humans
  • Insulin-Like Growth Factor I / pharmacology*
  • Protein Biosynthesis*
  • Proteoglycans / biosynthesis*

Substances

  • Glycoproteins
  • Proteoglycans
  • Insulin-Like Growth Factor I
  • Glucose