Restriction fragment length polymorphisms among uropathogenic Escherichia coli isolates: pap-related sequences compared with rrn operons

Infect Immun. 1990 Feb;58(2):471-9. doi: 10.1128/iai.58.2.471-479.1990.

Abstract

Among the adhesin-encoding virulence operons associated with uropathogenic Escherichia coli, only pap (pyelonephritis-associated pilus)-related gene clusters typically exhibit variation in their structure and chromosomal copy number. To access further such variability, we compared pap restriction fragment length polymorphisms (RFLPs) with those detected among rRNA (rrn) operons, which encode an essential host function unrelated to virulence. To place such findings in a phylogenetic perspective, the E. coli isolates were also characterized by using multilocus enzyme electrophoresis. Variation in the rrn RFLP profiles correlated with evolutionary divergence resolved by multilocus enzyme electrophoresis; isolates with identical rrn profiles represented the same or closely related electrophoretic types. In contrast, such isolates frequently had different pap-related RFLPs, indicating that these genetic variations have developed recently relative to the changes associated with essential rrn operons or metabolic enzymes. Despite such fluctuations, two lines of evidence indicate conditions under which the pap-related RFLPs can be stably maintained. First, for each of 20 patients with urosepsis, both the primary urinary tract isolate and the concurrent blood isolate were identical. Second, although obtained from different patients, some isolates representing the same electrophoretic type also had identical pap-related RFLPs. Thus, the genotypic diversity of this virulence adhesin operon was not generated during the course of acute infection or during laboratory manipulations. Since fecal E. coli isolates frequently carry chromosomally encoded pap-related gene clusters, these findings suggest that the intra- and interchromosomal recombination events generating the polymorphisms associated with the pap-related sequences likely occur among the E. coli of the commensal reservoir.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Escherichia coli / genetics*
  • Escherichia coli / pathogenicity
  • Fimbriae, Bacterial*
  • Hemolysin Proteins / biosynthesis
  • Multigene Family
  • Operon*
  • Polymorphism, Restriction Fragment Length*
  • Pyelonephritis / genetics*
  • RNA, Ribosomal / genetics*
  • Virulence

Substances

  • Hemolysin Proteins
  • RNA, Ribosomal