Flux growth and structure of two compounds with the EuIn2P2 structure type, AIn2P2 (A = Ca and Sr), and a new structure type, BaIn2P2

Acta Crystallogr C. 2009 Oct;65(Pt 10):i69-73. doi: 10.1107/S0108270109035987. Epub 2009 Sep 30.

Abstract

Single crystals of the new Zintl phases AIn2P2 [A = Ca (calcium indium phosphide), Sr (strontium indium phosphide) and Ba (barium indium phosphide)] have been synthesized from a reactive indium flux. CaIn2P2 and SrIn2P2 are isostructural with EuIn2P2 and crystallize in the space group P63/mmc. The alkaline earth cations A are located at a site with 3m symmetry; In and P are located at sites with 3m symmetry. The structure type consists of layers of A2+ cations separated by [In2P2]2- anions that contain [In2P6] eclipsed ethane-like units that are further connected by shared P atoms. This yields a double layer of six-membered rings in which the In-In bonds are parallel to the c axis and to one another. BaIn2P2 crystallizes in a new structure type in the space group P2(1)/m with Z = 4, with all atoms residing on sites of mirror symmetry. The structure contains layers of Ba2+ cations separated by [In2P2]2- layers of staggered [In2P6] units that form a mixture of four-, five- and six-membered rings. As a consequence of this more complicated layered structure, both the steric and electronic requirements of the large Ba2+ cation are met.