Curvature-tuned preparation of nanoliposomes

Langmuir. 2009 Nov 3;25(21):12604-13. doi: 10.1021/la901789h.

Abstract

Numerous methods have been reported for the preparation of liposomes, many of which, in addition to requiring time-consuming preparative steps and the use of organic solvents, result in heterogeneous liposome populations of incontrollable size. Taking into consideration the phenomenon of spontaneous vesiculation and the theory of curvature, here we present an extremely rapid and simple, solvent-free method for the preparation of monodisperse solutions of highly stable small unilamellar vesicles using both charged and zwitterionic lipids mixed with lyso-palmitoylphosphatidylcholine, exploiting a combination of a rapid pH change followed by a defined period of equilibration. Various experimental parameters and their interactions were evaluated in terms of their effect on resulting liposome size and shape, as well as on liposome stability and size distribution, with transmission electron microscope imaging being used to visualize the formed liposomes, and photon correlation spectroscopy to obtain statistical data on mean diameter and monodispersity of the liposome population. zeta potential measurements also provided information about the interpretation of vesiculation kinetics and liposome stability. The time interval of pH jump, operation temperature, equilibration time, and lipid type were shown to be the determining factors controlling the size, shape, and monodispersity of the liposomes. Buffer type was also found to be important for the long-term storage of the liposomes. Ongoing work is looking at the application of the developed method for encapsulation of bioactive molecules, such as drugs, genetic materials, and enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Liposomes*
  • Microscopy, Electron, Transmission
  • Nanostructures*

Substances

  • Liposomes