Validation of crystallographic models containing TLS or other descriptions of anisotropy

Acta Crystallogr D Biol Crystallogr. 2010 Aug;66(Pt 8):889-900. doi: 10.1107/S0907444910020421. Epub 2010 Jul 9.

Abstract

The use of TLS (translation/libration/screw) models to describe anisotropic displacement of atoms within a protein crystal structure has become increasingly common. These models may be used purely as an improved methodology for crystallographic refinement or as the basis for analyzing inter-domain and other large-scale motions implied by the crystal structure. In either case it is desirable to validate that the crystallographic model, including the TLS description of anisotropy, conforms to our best understanding of protein structures and their modes of flexibility. A set of validation tests has been implemented that can be integrated into ongoing crystallographic refinement or run afterwards to evaluate a previously refined structure. In either case validation can serve to increase confidence that the model is correct, to highlight aspects of the model that may be improved or to strengthen the evidence supporting specific modes of flexibility inferred from the refined TLS model. Automated validation checks have been added to the PARVATI and TLSMD web servers and incorporated into the CCP4i user interface.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Anisotropy
  • Crystallography, X-Ray / methods*
  • Databases, Protein
  • Internet
  • Models, Chemical